FAIRPLAY

Journal homepage: https://jurnal.javamutiaramedia.org/index.php/fairplay/index

Contribution to eye-legged coordination, lumbar muscle power, and abdominal muscle strength versus shooting ability in WTW TC Grobogan U 13-15 Year-old

Pomo Warih Adi^{1⊠}, Septian Aldo Fijaya¹

¹Physical Education Health and Recreation/Faculty of Sport, Sebelas Maret University, Jalan Ir. Sutami 36 Kentingan, Jebres, Surakarta, Central Java, 57126, Indonesia

> Corresponding author* E-mail: pomowarih@staff.uns.ac.id

ABSTRACT

The aim of this study is to find out the contribution of eye and leg coordination, limb muscle power, and abdominal muscle strength to shooting abilities in WTW football player TC Grobogan aged 13-15 years 2024. The data analysis results are presented as follows, (1) known using the Pearson product moment correlation with an eye-foot coordination significance value of 0.013 < 0.05 meaning that there is a significant correlation. Eye-legged coordination gives an Effective Contribution of 19.3% to the Shooting ability. (2) The significance of the Node Muscle Power with Shooting capabilities is 0.037 < 0.05, meaning there is an important correlational relationship.

ARTICLE INFO:

Article History:

Submitted/Received 19 March 2025 First Revised 25 August 2025 Accepted 22 October 2025 First Available online 22 October

Publication Date 22 October 2025

Keyword:

contributions, eye and leg coordination, muscle power, abdominal muscle strength, shooting, football

1. INTRODUCTION

Football is a team sport in which two teams compete by hitting the ball, which is contested by players on both teams. By kicking the ball contested by players of both teams with the aim of entering as many balls as possible into the opponent's goal and defending the goal so as not to concede with reference to predetermined rules. This conclusion can be drawn from the opinions expressed above. Thus, to play soccer effectively, players must be in good physical condition and understand the basics of playing soccer. According to Erdem, K (2017) "Many factors influence the outcome of football matches, and football is characterized by a combination of technical, tactical, physical, physiological, and psychological elements".

Good technique and physical condition determine a player's ability to play soccer well. Shooting accuracy in soccer is an important factor to score goals against the opposing team. Shooting accuracy comes from the words "precise" and "shot". Mahanani & Indriarsa, 2021, Shooting is kicking the ball with the inside leg, outside leg, and back. (Sarifudin et al., 2023). In addition, accuracy is the ability of individuals to guide their movements towards a predetermined target or target according to their abilities. Thus, one of the key strategies in soccer is shooting because the goal of the game is to put the ball into the opponent's goal in order to win. A soccer player must be proficient in shooting techniques because shooting techniques are the foundation of attack which is a crucial aspect of the game. Therefore, there are many internal and external factors that affect shooting ability, such as physical conditions such as leg muscle power, eye-foot coordination, abdominal muscle strength, and external factors such as infrastructure support, parental support, training discipline, and desire to practice.

There are supporting factors in performing basic shooting techniques including: 1) eye-foot coordination, is one of the physical condition factors that play an important role in shooting. When shooting, good coordination is needed between the eyes and feet to see the target and direct the ball according to the desired shooting target. According to Sukadiyanto (2011) defines "The ability to

combine the movements of two or more joints into one coordinated action is called coordination". 2) Leg muscle power, when shooting leg muscle power is one important component. Because leg muscle strength is an important part of the technique of kicking the ball to get the best kick results will help the motion or forward swing of the leg produced by the contraction of the leg muscles. 3) Abdominal muscle strength, is a component of physical condition whose role is needed when shooting because the abdominal muscles are the center of power as a support for body balance when shooting in football.

Given the importance of the role of physical condition eye-foot coordination, leg muscle power, and abdominal muscle strength when shooting. Researchers also want to find out how much the three components contribute to shooting ability, so researchers will conduct a study entitled: "Contribution of eye-foot coordination, leg muscle power, and abdominal muscle strength to soccer shooting ability in WTW TC Grobogan U 13-15 Training players in 2024".

2. METHODS

The research was conducted in Jambon Village, located in Pulokulon Sub-district of Grobogan Regency. The Jambon Village field is where the WTW TC team conducts routine training. This research design uses a quantitative descriptive approach to investigate the basic correlation between the independent variable and the dependent variable. In this study the variables contained in this study consisted of independent variables (Eye-foot coordination, leg muscle power, abdominal muscle strength. The dependent variable (Shooting ability).

The term "population" refers to a broad category that includes things or people with certain attributes and features that researchers choose to study and draw conclusions from." (Sugiyono, 2017: 61). The population in this study were 27 WTW TC Grobogan training players. The sample of this study were WTW TC Grobogan training players aged 13-15 years totaling 27 people.

This study uses the Total Sampling technique, the Total Sampling technique is a sampling method used in this study. The number of samples taken must be comparable to the population in the total sampling method. (Sugiyono, 2007). Because the population is less than 100 people, it uses total sampling, and each member of the population is sampled, totaling 27 people.

To describe the research problem and reach a conclusion, data analysis is very important. Three independent variables and one dependent variable will be correlated many times in data analysis which will be used for calculations and to find out how much contribution. To analyze the data of this study using statistical methods and SPSS Version 25 x65 Bit. The analysis used includes normality test, linearity test, correlation test, multiple regression analysis, and F test.

3. RESULT AND DISCUSSION RESULT

This research was conducted on April 28, 2024 at the Jambon Village soccer field. There were 27 players who became research samples with total sampling technique. The data in this study consisted of eye and foot coordination data, leg muscle *power*, abdominal muscle strength, and *shooting* tests. The results of the data analysis can be described as follows:

a. Eye-foot coordination data

By using eye-foot coordination data, the aim is to find out how the coordination of both eyes and feet, as well as whole body coordination. The results of the data on the ankle coordination of WTW TC Grobogan training players are as follows:

Figure 1. Eye-foot coordination diagram

Based on diagaram 1, it can be seen that the eye-foot coordination data of WTW TC Grobogan Training players have "very good" abilities as many as 27 players (100%), "good" abilities as many as 0 players (0%), "moderate" abilities as many as 0 players (0%), "less" abilities as many as 0 players (0%), and "very less" abilities as many as 0 players (0%). From the data above, the mean, median, minimum, maximum, and standard deviation values are obtained as follows:

Table 1. Eye-Foot Coordination Data Description

Mean	14,85
Median	15
Mode	15
Max	17
Min	13
Std deviation	1,379

Based on Table 1 above, it can be seen that the average eye and foot coordination ability of WTW TC Grobogan Training players is 14.85 so that it falls into the "very good" category and has a median value of 15. With a maximum score of 17 and a minimum score of 13 and a standard deviation value of 1.379.

b. Leg muscle power data

Leg muscle *power* data aims to determine *power* (explosive *power*). The results of the data on leg muscle *power* of WTW TC Grobogan Training players are as follows:

Figure 1. Limb Muscle Power Diagram

Based on diagram 2, it can be seen that the limb muscle *power of* WTW TC Grobogan Training players has "very good" ability as many as 7 players (26%), "good" ability as many as 7 players (26%), "moderate" ability as many as 7 players (26%), "less" ability as many as 6 players (22%), and "very less" ability as many as 0 players (0%). From the data above, the mean, median, maximum, minimum, and standard deviation are obtained as follows:

Table 1. Description of Limb Muscle Power Data

Mean	2,00
Median	2,01
Mode	1,8
Max	2,62
Min	1,29
Std Deviation	0,448

Based on Table 2 above, it can be seen that the average ability of leg muscle power of WTW TC Grobogan Training players is 2.00 so that it is included in the "good" category and has a median value of 2.01. With a maximum score of 2.62 and a minimum score of 1.29 and a standard deviation value of 0.448.

c. Abdominal muscle strength data

The sit up test data aims to determine the strength of the abdominal muscles. The results of the abdominal muscle strength data (sit ups) of WTW TC Grobogan Training players are as follows:

Figure 2. Abdominal Muscle Strength (Sit Up) Diagram

Based on diagaram 3, it can be seen that the data on the results of Sit Up players of WTW TC Grobogan Training have "very good" abilities as many as 2 players (7%), "good" abilities as many as 8 players (30%), "moderate" abilities as many as 17 players (63%), "less" abilities as many as 0 players (0%), and "very less" abilities as many as 0 players (0%). From the data above, the mean, median, maximum, minimum, and standard deviation are obtained as follows:

Table 2. Description of Abdominal Muscle Strength Data

Mean	25,19
Median	25
Mode	25
Max	31
Min	20
Std Deviation	2,321

Based on Table 3 above, it can be seen that the average abdominal muscle ability of WTW TC Grobogan Training players is 25.19 so that it is included in the "good" category and has a median value of 25. With a maximum score of 31 and a minimum score of 20 and a standard deviation value of 2.321.

d. Shooting test data

Shooting ability test data aims to determine shooting ability. The results of the shooting ability test data for WTW TC Grobogan Training players are as follows:

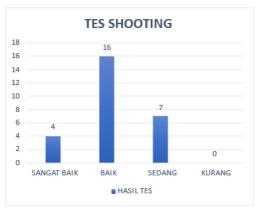


Figure 4. Shooting Test Diagram

Based on diagaram 4, it can be seen that the data on the shooting ability of WTW TC Grobogan Training players have "very good" abilities as many as 4 players (15%), "good" abilities as many as 16 players (59%), "moderate" abilities as many as 7 players (26%), "less" abilities as many as 0 players (0%). From the data above, the mean, median, maximum, minimum, and standard deviation are obtained as follows:

Table 4. Description of Shooting Ability Data

Mean	16,70
Median	17

Mode	17
Max	21
Min	13
Std Deviation	2,757

Based on Table 4 above, it can be seen that the average shooting ability of WTW TC Grobogan Training players is 16.70 so that it falls into the "good" category and has a median value of 17. With a maximum score of 21 and a minimum score of 13 and a standard deviation value of 2.757.

1. Prerequisite Test

This test is carried out before the data is analyzed, the stages carried out in the prerequisite analysis test include:

a. Normality Test

The data normality test is a prerequisite test of the eligibility of data to be analyzed using parametric statistics or nonparametric statistics. The normality test was carried out with the *One-Sample Kolmogorov-smirnov* test with the decision rule if the significance > 0.05 then it can be said that the data is normally distributed. This calculation uses SPSS as follows:

Table 3. Normality Test Results

One-Sample Kolmogorov-S	mirnov Test					
		Unstandardize				
		d Residual				
N		27				
Normal Parameters ^{a,b}	Mean	.0000000				
	Std.	2.03724846				
	Deviation					
Most Extreme Differences	Absolute	.137				
	Positive	.137				
	Negative	096				
Test Statistic		.137				
Asymp. Sig. (2-tailed)		$.200^{c,d}$				
a. Test distribution is Norm	al.					
b. Calculated from data.	b. Calculated from data.					
c. Lilliefors Significance Co	rrection.					

Based on table 5 the normality test results above show a significance value of 0.200 with a sig result of 0.200 greater than 0.05 so that this data is considered normally distributed.

d. This is a lower bound of the true significance.

b. Linearity Test

The linearity test aims to determine whether the variables between independent and dependent have a linear relationship or not significantly. Linearity analysis in this study used ANOVA in SPSS 25 using a significance level of 0.05.

Table 4. Linearity Test Results of Eye-Foot Coordination

ANOVA Table							
			Sum of	df	Mean	F	Sig.
			Squares		Square		
SHOOTING TEST *	Between	(Combined)	65.572	4	16.393	2.731	.055
TOE COORDINATION	Groups	Linearity	44.358	1	44.358	7.390	.013
	_	Deviation	21.214	3	7.071	1.178	.341
		from Linearity					
	Within Gro	oups	132.057	22	6.003		
	Total		197.630	26			

Based on table 4.6 linearity test above, it is obtained that the significance value (Deviation from Linearity) is 0.341 > 0.05, meaning that there is a linear relationship between the two variables.

Table 5. Limb Muscle Power Linearity Test Results

ANOVA Table							
			Sum of Squares	df	Mean Square	F	Sig.
SHOOTING TEST *	Between	(Combined)	38.868	3	12.956	1.877	.162
LEG MUSCLE	LE Groups	Linearity	32.224	1	32.224	4.668	.041
POWER		Deviation from	6.644	2	3.322	.481	.624
		Linearity					
	Within Gro	ups	158.762	23	6.903		
	Total		197.630	26			

Based on table 7 linearity test above, it is obtained that the significance value (Deviation from Linearity) is 0.624> 0.05, meaning that there is a linear relationship between the two variables.

Table 6. Linearity Test Results of Abdominal Muscle Strength

ANOVA Table							
			Sum of Squares	df	Mean Square	F	Sig.
TEST SHOOTING	Between	(Combined)	52.100	2	26.050	4.296	.025
* ABDOMINAL MUSCLE STRENGTH	Groups	Linearity Deviation from Linearity	52.019 .082	1 1	52.019 .082	8.579 .013	.007 .909
	Within Grou Total	•	145.529 197.630	24 26	6.064		

Based on table 8 linearity test above, it is obtained that the significance value (Deviation from Linearity) is 0.624> 0.05, meaning that there is a linear relationship between the two variables.

2. Hypothesis Test

This hypothesis test aims to answer the estimated hypotheses that have been made previously. In this hypothesis test using *Pearson Product Moment* correlation analysis and multiple regression analysis which can be used to determine the contribution of 2 or more variables in a study.

a. Pearson Product Moment Correlation Test

After conducting prerequisite tests, normality, and linearity, then tested the hypothesis through Pearson Product Moment correlation analysis. The following are the results of the research hypothesis test:

Table 7. Results of Product Moment Correlation Analysis

Correlations					
		Foot-eye	Leg	Abdominal	Shooting
		coordination	muscle	muscle strength	test
			power		
Foot-eye	Pearson	1	.130	.121	$.474^{*}$
coordination	correlation				
	Sig. (2-tailed)		.518	.548	.013
	N	27	27	27	27
Leg muscle power	Pearson	.130	1	.500**	$.404^{*}$
0 1	correlation				
	Sig. (2-tailed)	.518		.008	.037
	N	27	27	27	27
Abdominal	Pearson	.121	.500**	1	.513**
muscle strength	correlation				
C	Sig. (2-tailed)	.548	.008		.006
	N	27	27	27	27
Shooting test	Pearson	$.474^{*}$	$.404^*$.513**	1
<i>3</i> · · · · ·	correlation				
	Sig. (2-tailed)	.013	.037	.006	
	N	27	27	27	27
*. Correlation is sig					
**. Correlation is si					

Based on the data above can hypothesis testing is carried out by comparing the level of significance (2-tailed), if the Sig value> 0.05 then there is no significant relationship, if. value. Sig <0.05 then there is a significant relationship. Based on table 9 above, it is obtained that the significance value between variables. Coordination Eye And Foot with Ability Shooting is equal to 0.013 <0.05, meaning that there is a significant correlation relationship between variable X1 and Y1 the significance value between the variables. Power Muscle Limb with Shooting Ability is equal to 0.037 <0.05, meaning that there is a significant correlation relationship between the X2 variable and Y1. Then, the significance value between the Abdominal Muscle Strength variable and Shooting Ability is 0.006 <0.05, meaning that there is a significant correlation between the X3 variable and Y1

b. Multiple Regression Analysis

Analysis. Regression. is. a. method. or. techn.ik an.a.lysis of hypo.thesis pen.elitian to.test.whether.there.is.no.influence.between.one.variable.and.another.variable, which is expressed in the form of a regression equation. The analysis used to test the F Test and the Coefficient of Determination (R2).

1. F test

Table 8. F Test Analysis Results

Model		Sum of Squares df		Mean Square	F	Sig.
1 Regression		89.720 3		29.907	6.374	.003 ^b
	Residuals	107.910	23	4.692		
_	Total	197.630	26			

In the F test analysis if there is a sign value <0.05 or the value of F count> F table, then there is an influence of variable X on variable Y or vice versa. In the ANOVA table above shows a sig value of 0.003 <0.05 so it can be concluded that simultaneously there is a significant influence between m.ata-leg coordination, tu.ngkai muscle *power*, and abdominal o.tot strength on *shootin.g* ability.

2. Coefficient of Determination (R2)

Table 9. Coefficient of Determination Analysis Results

	2 40	10 / 1 0 0 0 1111 0 1 0	1141) 010 1100 4110		
Model	Model R R Square Ac 1 .674a .454		Adjusted R Square	Std. Error of the Estimate	
1			.383	2.166	

Based on table 11 above, it is known that the coefficient of determination or R Square is 0.454. This R Square value of 0.454 is the result of calculating the correlation coefficient or "R", which is $0.674 \times 0.674 = 0.454$. Based on the coefficient of determination (R Square) is 0.454 or equal to 45.4%. This figure means that the variable eye-foot coordination (X1), leg muscle power (X2), abdominal muscle strength (X3) simultaneously (together) affects the *shooting* ability variable (Y) by 45.4%, while (100% - 45.4% = 54.6%) is influenced by other variables outside this regression equation or variables that are not studied.

3. Predictor Contribution

Predictor Contribution is the value of the amount of influence contribution that is given by each independent variable to the dependent variable. Predictor contribution has 2 types, namely Relative Contribution (SR) and Effective Contribution (SE).

a. Relative Contribution (SR)

The relative contribution is a measure that shows the magnitude of the contribution of the predictor variable (independent variable) to the amount of regression squares. In calculating the relative contribution of each independent variable using the following equation:

$$SR(X)\% = \frac{SE(x)\%}{R2}$$

Description:

R2: Coefficient of Determination

So that the Relative Contribution (SR) value for each independent variable is.

1) Relative Contribution of Eye-Foot Coordination (X1) to Shooting Ability (Y) SR(X1)% = 19.3% / 45.4%

= 42,5%

2) Relative Contribution of Limb Muscle *Power* (X2) to *Shooting* Ability (Y)

```
SR(X2)% = 6.4% / 45.4%
= 14,1%
```

3) Relative Contribution of Abdominal Muscle Strength (X3) to Shooting Ability (Y)

SR(X2)% = 19.7% / 45.4%

= 43.4%

4) Total Relative Contribution can be calculated as follows:

SR total = SR(X1)% + SR(X2)% + SR(X3)%

Total SR = 42.5% + 14.1% + 43.4%

Total SR = 100%

b. Effective Contribution (SE)

Effective contribution is a metric that measures the extent to which a predictor variable (independent variable) contributes to the criterion variable (dependent variable) through a regression analysis. To calculate the amount of effective contribution, the following table is made:

Table 10. Beta Value, Correlation Coefficient, and R Square

Variable	Regression Correlation (Beta)	Correlation Coefficient	R.Square
Eye-foot Coordination	0,407	0,474	45,4
Limb Muscle Power	0,159	0,404	
Abdominal Muscle Strength	0,384	0,513	

Effective Contribution is calculated using the following formula:

SE(X)% = Betax x Correlation Coefficient x 100%

Description:

Beta x : Beta value of independent variable X

Correlation coefficient : The correlation coefficient of the dependent variable X

Then the value of each effective contribution for each independent variable is as follows.

1) Effective Contribution of Leg-Eye Coordination (X1) to Shooting Ability (Y)

 $SE(X)100\% = 0.407 \times 0.474 \times 100\% = 19.3\%$

2) Effective Contribution of Limb Muscle *Power* (X2) to *Shooting* Ability (Y)

 $SE(X)100\% = 0.159 \times 0.404 \times 100 = 6.4\%$

3) Effective Contribution of Abdominal Muscle Strength (X3) to Shooting Ability (Y)

 $SE(X)100\% = 0.384 \times 0.513 \times 100 = 19.7\%$

4) Total Effective Contribution can be calculated as follows.

Total SE = SE(X1)% + SE(X2)% + SE(X3)%

Total SE = 19.3% + 6.4% + 19.7%

Total SE = 45.4%

DISCUSSION

The interpretation of the results of this study provides an interpretation of the results of the data analysis that has been stated. Based on hypothesis testing, it produces two analysis conclusions, namely: (a) there is a relationship between each independent variable and the dependent variable (b) there is a simultaneous relationship between the independent variable and the dependent variable. The following is a further description of the data analysis conclusions:

1. The relationship between the variable X1 Foot Eye Coordination with the variable Y *Shooting* Ability.

Based on the results of research conducted previously, it shows that the variable Coordination of Eyes and Feet has a regression coefficient value of 0.407 with a positive par.a'm'eter. This means that every increase in the Eye and Foot Coordination variable, the Shooting Ability variable increases. Eye and Foot Coordination provides an effective contribution of 19.3%, this shows that Eye and Foot Coordination has a role in *Shooting* Ability. The results of the hypothesis test also show that the variable Eye and Foot Coordination is significantly related to the variable *shooting* ability of WTW TC Grobogan soccer players.

2. The relationship between the X2 Limb Muscle *Power* variable and the Y *Shooting* Ability variable. Based on the results of research conducted previously, it shows that the Limb Muscle *Power* variable has a regression coefficient value of 0.159 with positive parameters. This means that every increase in the Limb Muscle *Power* variable, the Shooting Ability variable increases. Limb Muscle

Power Provides an effective contribution of 6.4%, this indicates that leg muscle power affects *shooting* ability. The results of hypothesis testing also show that the limb *power* variable is significantly correlated with the shooting ability variable of WTW TC Grobogan soccer players.

3. The relationship between the X3 Abdominal Muscle Strength variable and the Y *Shooting* Ability variable.

Based on the results of research conducted previously, it shows that the variable Abdominal Muscle Strength has a regression coefficient value of 0.384 with positive parameters. This means that every increase in the Abdominal Muscle Strength variable, the Shooting Ability variable increases. Limb Muscle *Power* provides an effective contribution of 19.7%, this shows that Abdominal Muscle Strength has a role in *Shooting* Ability. The results of hypothesis testing also show that the Abdominal Muscle Strength variable is significantly related to the variable *shooting* ability of WTW TC Grobogan soccer players.

Simultaneous or joint contribution (Eye and Foot Coordination, Limb Muscle *Power*, and Abdominal Muscle Strength) to Shooting Ability. The results showed that the independent variables (Eye and Foot Coordination, Limb Muscle *Power*, and Abdominal Muscle Strength) simultaneously or together contributed 45.4%.

4. CONCLUSION

In conclusion of the data analysis, research figures, research test results, and discussion of the contribution of eye and foot coordination, leg muscle power, and abdominal muscle strength to the shooting ability of soccer players at WTW TC Grobogan U Training on March 13-15, 2024, it can be concluded as follows:

Terd.ap'at su.mban.gan, ta.ra Eye and Ka.ki Coordination with Shooting Ability on WTW TC Grobogan Training players after known by using Pearson product moment with the significance value of Eye and Foot Coordination with Shooting ability is 0.013 <0.05 which means there is a significant correlation relationship. Eye and foot coordination provides an effective contribution of 19.3% to shooting ability .

There is a contribution between Limb Muscle Power and Shooting Ability in WTW TC Grobogan Training players after being known by using Pearson product moment correlation with the significance value of Limb Muscle Power with Shooting Ability is 0.037 <0.05, meaning there is a significant correlation relationship. Limb Muscle Power provides an Effective Contribution of 6.4% to Shooting ability.

There is a contribution between Abdominal Muscle Strength and Shooting Ability in WTW TC Grobogan Training players after being known by using Pearson product moment correlation with the significance value of Abdominal Muscle Strength with Shooting Ability is 0.006 <0.05, meaning there is a significant correlation relationship. Abdominal Muscle Strength provides an effective contribution of 19.7% to Shooting ability.

There is a significant contribution between Eye and Foot Coordination, Limb Muscle Power, and Abdominal Muscle Strength to Shooting Ability can be seen that the significance value (Sig.) in the F test is 0.003. Because the sig value is 0.003 < 0.05 so it can be concluded that eye-foot coordination, leg muscle power, and abdominal muscle strength simultaneously (together) affect shooting ability. Based on the coefficient of determination (R Square) is 45.4 or equal to 45.4%. This figure proves that the variables that eye-foot coordination, leg muscle power, and abdominal muscle strength simultaneously (together) affect the shooting ability variable by 45.4% while (100% - 45.4% = 54.6%) outside of other variables that have not been studied.

REFERENCES

Adityatama, F. (2017). The Relationship of Limb Muscle Power, Eye-Leg Coordination and Abdominal Muscle Strength with the Accuracy of Shooting the Ball. Champion: Journal of Sports, 2(2)

Azwira, A., Atiq, A., Puspa Hidasari, F., Yunitaningrum, W., & Triansyah, A. (2023). The application of team game tournament (TGT) type cooperative learning model on the learning outcomes of soccer shooting. Journal of Porkes, 6(1), 246-265. https://doi.org/10.29408/porkes.v6i1.16742

Bafirman. (2008). Physical Condition Building. Padang: UNP.

Bridle, Bob & Spencer, Sharon. 2011. Essential Soccer Skills "Key Tips and Techniques to Improve Your Game". New York: Dk Publishing.

Campo, S. S., Vaeyens, R., Philippaerts, R. M., Redondo, J. C., de Benito, A. M., & Cuadrado, G. (2009). Effects of lower-limb plyometric training on body composition, explosive strength,

- and kicking speed in female soccer players. The Journal of Strength & Conditioning Research, 23(6), 1714-1722.
- Candra, J., Muchlisin, A., Pasaribu, N., & Author, C. (2020). Competitor: Journal of Sports Coaching Education Contribution of Limb Muscle Explosiveness and Flexibility to Shooting Accuracy of Ssb Tunas Harapan Athletes. 12.
- De Villarreal, E. S., Suarez-Arrones, L., Requena, B., Haff, G. G., & Ferrete, C. (2015). Effects of plyometric and sprint training on physical and technical skill performance in adolescent soccer players. The Journal of Strength & Conditioning Research, 29(7), 1894-1903.
- FIFA. (2016). Youth football. Www.FIFA.Com.
- Irfan, M., Yenes, R., Irawan, R., Oktavianus, I., Education, P. S., Sports, K., & Sportsmanship, I. (2020). Basic Soccer Technique Skills. Patriot Journal, 2(3).
- Ismaryati. (2008). Sports Test and Measurement. Surakarta: LPP UNS and UNS Press Universitas Sebelas Maret Surakarta.
- Jumaking, J. (2020). The Effect of Limb Explosive Power, Eye-Foot Coordination and Self-Confidence on Shooting Ability to Goal in Soccer Game at Sman 2 Kolaka Students. Kinesthetic: Scientific Journal of Physical Education, 4(1), 122-131.
- Kurniawan, R., Rangkuti, Y., & Ulfah, N. (2020). The Relationship Between Wrist Flexibility, Eye-Hand Coordination and Training Motivation with the Accuracy of Table Tennis Forehand Strokes. Patriot Journal, 2(4), 951-965.
- Koger, Robert L. 2005. Basic Training for Youth Soccer Reliability. New York: United States of America.
- Luxbacher, Josheph A. (2012). Soccer: Steps to Success. Jakarta: PT Raja Grafindo Persada.
- Marhaendro, A. (2020). Measurement tests in sports. UNY
- Muhajir. (2007). Physical Education Sports and Health. Yudistira.Bandung Nurhasan. (2001). Test and Measurement in Physical Education. Jakarta, publisher of the Directorate General of Sports.
- Ngatman, & Andriyani, F, A. (2017). Test and Measurement for Evaluation in Physical Education and Sport
- Nurhasan and Narlan. 2010. Sports Education Tests and Measurements. Tasikmalaya: PJKR FKIP UNSIL.
- Pasaribu, A. M (2020). Sports tests and measurements. Yayasan Pendidikan dan Sosial Indonesia Maju (YPSIM) Banten.
- Sabik, R., & Rahayu, E. T. (2022). The Effect of Physical Fitness Training on the Ability of Basic Techniques of Shooting Football Games for Junior High School Students. Gelanggang Olahraga: Journal of Physical Education and Sports (JPJO), 5(2), 194-199.
- Sarifudin, A. I., Anam, K., Setyawati, H., Fajar, D., Permana, W., Mukarromah, S. B., Studi, P., & Keolahragaan, I. (2023). Concentration Level And Limb Muscle Power On The Accuracy Of Football Shooting. Jambura Health and Sport Journal, 5(1).
- Setiadi. (2007). Human Anatomy and Physiology. Yogyakarta: Graha Ilmu.
- Subardi et al 2007. My Favorite Sport. Football. PT Intan Pariwara. Klaten Indonesia
- Sucipto. (1999/2000). Football Department of Education and culture. Jakarta: Directorate General of Primary and Secondary Education.
- Sugiyono. (2017). Quantitative, Qualitative, and R&D Research Methods. Bandung: Alfabeta, CV.
- Suryadi, D., & Rubiyatno. (2022). Improving the Shooting Ability of Soccer Games Through Limb Muscle Strength Training. Journal of Recreational Health Education, 8(2), 237-246.
- Suyatno et al. 2010. Physical Education and Health Sports Grade VI. Erlangga. Jakarta.
- Widiastuti. 2015. Sports Tests and Measurements. Jakarta: PT RAJAGRAFINDO PERSADA.
- Widiyanto, & Laksono, A. B. (2017). Development of a Body Weight Training Model for Abdominal Muscle Training. Journal of Health and Recreation Education FIK UNY
- Yundarwati, S. (2023). Development of a Manipulative Motion-Based Basic Soccer Dribbling Technique Training Model for Lombok United Fc Players. Scientific Journal of Mandala Education (JIME), 9(1), 2442-9511.